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ABSTRACT
We propose an unsupervised learning method to disentangle
speech into content representation and speaker identity repre-
sentation. We apply this method to the challenging one-shot
cross-lingual voice conversion task to demonstrate the effec-
tiveness of the disentanglement. Inspired by β-VAE, we in-
troduce a learning objective that balances between the infor-
mation captured by the content and speaker representations.
In addition, the inductive biases from the architectural design
and the training dataset further encourage the desired disen-
tanglement. Both objective and subjective evaluations show
the effectiveness of the proposed method in speech disentan-
glement and in one-shot cross-lingual voice conversion.

Index Terms— Speech disentanglement, Voice conver-
sion, cross-lingual, one-shot, unsupervised learning

1. INTRODUCTION

Voice conversion (VC) is a technique that converts a source
speaker’s speech to make it sound as though it was uttered
by the designated target speaker, while the spoken content
remains unchanged [1]. Cross-lingual VC refers to the sce-
nario where the source and the target speakers do not speak
the same language [2]. Cross-lingual VC is more challenging
than intra-lingual VC because generally only a monolingual
corpus is available from the target speaker, which presents the
problem of training-inference mismatch. Furthermore, one-
shot cross-lingual VC is even more challenging, because there
is only a single utterance from the target speaker, who speaks
a language that is different from the source speaker. We focus
on one-shot cross-lingual VC in this paper.

Speech generation embeds different information elements
into the signal: content, speaker identity, emotion, language,
etc., where the first two elements tend to be more prominent.
Generally speaking, language can be considered as part of
content. We may regard that a universal phoneme set can
cover pronunciation patterns of all languages, and encode dif-
ferent languages in the spoken content. Following this ratio-
nale, we can solve the one-shot cross-lingual VC by disen-

tangling speech into a general content representation and a
speaker representation. Then the content representation from
the source speech and the speaker representation from the tar-
get speech can be combined to generate the speech with the
source content and the target speaker identity.

Many methods have been proposed to disentangle the
speech into content and speaker representations for one-shot
VC. Commonly adopted architectures are the auto-encoder
(AE) and variational auto-encoder (VAE) [3], with encoder(s)
to extract a frame-level feature sequence and a single vector
separately from the speech, aiming for the former to encode
spoken content, and the latter to encode speaker identity.
This design is based on the fact that the speaker identity is
a sequence-level element while the content is a frame-level
element. However, as we will discuss in Sec 3.1, this alone is
not enough to ensure the disentanglement of the content and
speaker representations. Many methods have been proposed
to further regularize the representation learning to facilitate
disentanglement.

AutoVC [4] proposes to apply down-sampling and dimen-
sion restriction to the content representation to remove the
speaker identity. VQVC and VQVC+ [5, 6] apply vector
quantization (VQ) to the content representation to eliminate
the speaker information. However, through explicit down-
sampling or VQ operations, these methods may hurt the fine-
grained temporal information and cause conversion quality
degradation. The mutual information (MI) between the con-
tent and the speaker representations has also been imposed
as a learning objective [7, 8] to encourage them to be statis-
tically independent, but the estimation of MI is difficult and
may make the training process more complex. Other methods
apply instance normalization [9] and activation regularization
[10] to the content representation, which can induce less in-
formation loss and are easier to implement.

Recently, β-VAE [11, 12] has been proposed as a vari-
ant of VAEs for better latent variable disentanglement. With
an extra weight parameter β being imposed on the Kullback-
Leibler (KL) divergence term, β-VAE restricts the channel
capacity of the latent variable to encode the information of
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the input data. The original β-VAE is more suitable for static
data such as images. In this paper, we propose a variant of β-
VAE that is specifically for disentanglement of sequential data
into time-variant and time-invariant representations. Different
from β-VAE which only has one encoder, we adopt two en-
coders that are respectively designed for content and speaker
representation learning. In addition, two weight parameters
βc and βs are imposed on the KL divergence terms for con-
tent and speaker representations, respectively. We show the-
oretically that the KL divergence term is an upper bound of
the MI between the latent variable and the input data. Thus,
βc and βs function as two gates to restrict the amounts of in-
formation of the data that can be captured by the content and
speaker representations, respectively. With proper βc and βs

imposed, the information captured by the two representations
are complementary to each other, while the content informa-
tion and speaker identity information are precisely allocated
to them, respectively.

Compared to existing one-shot VC methods, the proposed
method imposes much simpler restrictions on the latent vari-
able (only two weight parameters on the KL divergence
terms) which is easier to implement and train. We do not
apply intentionally bottleneck operations such as dimen-
sion reduction or down-sampling to the latent variable, thus
less information loss is induced. Furthermore, the proposed
method can be explained by information theory, which is
theoretically more solid.

2. RELATED WORK

Traditional cross-lingual VC methods rely extensively on
the phonetic posteriorgrams (PPGs) [2, 13, 14, 15], which
is a speaker-independent content representation explicitly
extracted via a speaker-independent automatic speech recog-
nition (SI-ASR) model. VC is achieved by first extracting
PPGs from the source speech, then converting the PPGs into
the target speech with a synthesis model, which can be trained
only on the target speaker’s speech corpus. Though PPGs can
be considered as speaker-independent, they are language-
dependent, which means that PPGs of one language may not
be a good content representation of another language. Be-
sides, since the PPGs extractor is fixed during the training of
the synthesis model, it cannot be optimized for all interested
languages. In contrast, the proposed method learns to extract
the content representation for all interested languages jointly
with other parts of the model, thus can in theory learn a more
generalized content representation.

For unsupervised disentangled speech representation
learning, FHVAE [16] propose hierarchical prior distribu-
tions for VAE to encourage elements of different time scales
to be factorized, while the sequence-level representation is
further regularized by a discriminative objective. Based on
FHVAE, a method is proposed for one-shot cross-lingual VC
[17]. The method proposed in this paper is different in terms

of the restriction imposed, as we emphasize the effects of two
weights on the KL divergence terms and no other learning
objective is introduced. Another recently proposed method
for one-shot intra-lingual VC [18] also stresses the effects of
imposing weights on two KL divergence terms to encourage
disentanglement. However, the proposed method is different
from [18] in the following ways: First, the prior distribution
for the content representation of [18] is a trainable autoregres-
sive one, while ours is an fixed isotropic Gaussian. Second,
as we will show in Section 3.2, the current paper presents
a different derivation (especially for the MI). Besides, it is
claimed in [18] that the right choice of the ratio between the
two weights can yield the desired disentanglement, while we
argue that the absolute values of both weights can also be
important for good disentanglement. While some methods
[7, 8] estimate the MI between different representations as a
loss term, the derivation of the MI in this paper only serves
as an explanation of the proposed method, we do not need to
estimate it numerically.

3. METHOD

Let x be the acoustic feature extracted from speech, and the
objective is to find latent variables zc and zs, such that zc en-
codes only spoken content information, while zs exclusively
contains speaker identity information. With the assumption
that zc and zs are statistically independent, we can derive the
objective function as shown in Eqn. (1), following the for-
malization of VAEs. In Eqn. (1), qϕ(zc|x) and qϕ(zs|x), are
posterior distributions of zc and zs given x, respectively, pa-
rameterized by ϕ. pθ(x|zc, zs) denotes the conditional distri-
bution of x given zs and zc and is parameterized by θ. p(zc)
and p(zs) are prior distributions of zc and zs, respectively,
and are defined as isotropic Gaussians in this paper, pd(x) is
the data distribution of x. For simplicity, we refer to the three
terms in Eqn. (1) as the reconstruction loss, content KL, and
speaker KL, respectively.

Lvanilla = −Epd(x)qϕ(zc|x)qϕ(zs|x) [log pθ(x|zc, zs)]
+ Epd(x) [KL [qϕ(zc|x) ∥ p(zc)]]

+ Epd(x) [KL [qϕ(zs|x) ∥ p(zs)]] (1)

The general unsupervised learning model defined above
without any other inductive biases cannot ensure the disen-
tanglement, as is commonly believed [19]. To achieve the
disentanglement of content and speaker representations with
the above formalization, our solutions are as follows: We first
introduce the architectural design that facilitate the separation
of time-variant and time-invariant elements in Section 3.1; In
Section 3.2 we present the learning objective that can encour-
age zc and zs to be complementary, while exactly the content
information and speaker identity information can be assigned
separately to them. The effect of the training dataset is also
emphasized in Section 3.3.



3.1. Architectural Design

A basic observation about speech is that the content varies
constantly across an utterance while the speaker identity re-
mains the same for the whole utterance. That is, the con-
tent is a time-variant feature while speaker identity is a time-
invariant one. This informs us about the structures of the
content and speaker representations. Suppose that the acous-
tic feature x is of the shape RT×Dx , where T and Dx de-
note the number of frames and the dimension of x, respec-
tively. Then zc and zs should have the corresponding shapes
of RT×Dc and RDs to separately capture the time-variant con-
tent information and time-invariant speaker identity informa-
tion, where Dc and Ds are the dimensions of zc and zs, re-
spectively. A content encoder transforming the input frame-
wisely and a speaker encoder aggregating the whole input se-
quence into a single vector should thus be adopted. Many
methods introduced in Section 1 have adopted similar archi-
tectures.

However, this architecture alone cannot guarantee the dis-
entanglement of content and speaker representations. The
reasons are two-fold: First, the architecture cannot ensure
that the two representations learned are complementary to
each other. Intuitively, the two representations will strive to
capture as much information about the input data as possi-
ble to reduce the reconstruction loss. Thus, it is possible
that the two representations have overlap in the captured in-
formation. Second, even if we can restrict the two repre-
sentations to be complementary (e.g., via bottleneck), then
we can reasonably assume that zc and zs respectively cap-
tures complementary time-variant and time-invariant infor-
mation of speech, but it is not guaranteed that the learned
time-variant and time-invariant elements are exactly content
and speaker identity. The reason is that there are many com-
binations of time-variant and time-invariant information ele-
ments other than the targeted one. For example, background
noise can (mostly) be considered as a time-invariant element,
against the time-variant element of clean speech, but the ar-
chitecture alone cannot distinguish this pair of elements from
the content-speaker identity pair.

3.2. Learning Objective

Aside from the architectural design to facilitate the separa-
tion of time-variant and time-invariant feature into zc and zs,
we also need to ensure that: 1) the information captured by
zc and zs are complementary and 2) the complementary el-
ements captured are content and speaker identity instead of
other element pairs – and the key is to restrict the amounts of
information of x that can be captured by zc and zs. To solve
issue 1), we can restrict the overall amount of information
captured by zc and zs together to a low level. With no re-
dundant information encoded, the two representations will be
compact and contain complementary information. To further
tackle issue 2), it is important to restrict the relative amounts

of information captured in the two representations, such that
zc and zs captures exactly the content part and the speaker
identity part of information in x, respectively.

The information captured by a latent variable can be quan-
tified as its MI with the data. Following the typical practice
by approximating the joint distribution p(x, z) with its varia-
tional version qϕ(z|x)pd(x) [20, 21], we can derive the vari-
ational MI between x and z as shown in Eqn. (2), where z is
a general variable name covering zc and zs.

Iv(x, z) = Eqϕ(z|x)pd(x)

[
log

qϕ(z|x)pd(x)
pd(x)qϕ(z)

]
= Eqϕ(z|x)pd(x)

[
log

qϕ(z|x)
p(z)

+ log
p(z)

qϕ(z)

]
= Epd(x) [KL [qϕ(z|x) ∥ p(z)]]

− KL [qϕ(z) ∥ p(z)] (2)

Here qϕ(z) is the marginal distribution of z and is defined
as qϕ(z) =

∫
x
qϕ(z|x)pd(x)dx. The results in Eqn. (2)

is different from the MI derived in [18], which claim that
Iv(x, z) = Epd(x) [KL [qϕ(z|x) ∥ p(z)]]. This derivation is
resulted from approximating the marginal distribution of z
with its prior p(z), which we consider is generally not ap-
plicable.

Eqn. (2) denotes that Epd(x) [KL [qϕ(z|x) ∥ p(z)]] is
an upper-bound of Iv(x, z). In this sense, an approximate
method to restrict the amount of information of x cap-
tured by the latent variable z is to restrict the KL diver-
gence term Epd(x) [KL [qϕ(z|x) ∥ p(z)]]. Though the term
KL [qϕ(z) ∥ p(z)] is also penalized as a side-effect, which
encourages the marginal distribution of z to be more like an
isotropic Gaussian and does not other harm. Motivated by
this, we introduce two weight parameters βc and βs to the
content KL and speaker KL terms, respectively, with the goal
to restrict the information that can be captured by zc and zs.
The restricted objective function is shown in Eqn. (3), while
Eqn. (4) explicitly denotes the relationship between two KL
terms and their corresponding MI terms.

Lβ = −Epd(x)qϕ(zc|x)qϕ(zs|x) [log pθ(x|zc, zs)]
+ βc · Epd(x) [KL [qϕ(zc|x) ∥ p(zc)]]

+ βs · Epd(x) [KL [qϕ(zs|x) ∥ p(zs)]] (3)
= −Epd(x)qϕ(zc|x)qϕ(zs|x) [log pθ(x|zc, zs)]
+ βc · [Iv(x, zc) + KL [qϕ(zc) ∥ p(zc)]]

+ βs · [Iv(x, zs) + KL [qϕ(zs) ∥ p(zs)]] (4)

While the reconstruction loss in Eqn. (3) encourages both
zc and zs to capture as much information about x as possible,
the weight parameters βc and βs act as two gates to control
the amounts of information of x going through zc and zs, as
indicated by Eqn. (4). The learning objective (3) can help
solve the problems of the architectural design in the follow-
ing ways: By choosing the proper absolute values of both βc



and βs, the information captured by zc and zs together will
be compact and thus the information contained in each latent
variable will be complementary. On the other hand, by tuning
relative values of βc and βs, the amounts of information in x
allocated to zc and zs will change accordingly. In this case,
we can find the optimal parameters pair that yields exactly the
separation of content and speaker identity.

Note that if we let βc = βs and combine zc and zs to-
gether, Eqn. (3) will become exactly the learning objective
of the standard β-VAE [11]. In this sense, Eqn. (3) can be
considered as a generalized form of β-VAE.

3.3. Dataset bias

The dataset used to train the model is also a very important
inductive bias to facilitate the learning of disentangled rep-
resentations. One consideration is that the two information
elements to be disentangled should vary independently in the
dataset. Besides, other elements of variation that may inter-
fere the interested elements should not appear in the dataset.
For example, when disentangling the content and speaker
identity elements, too much variation in emotions may dis-
turb the learning of speaker identity element since they are
both sequence-level elements. In our case, we combine two
monolingual corpora as the training dataset, in which the
speaker and general content are the main variations. More
details are given in Section 5.1.

4. IMPLEMENTATION

The proposed model consists of a speaker encoder, a con-
tent encoder, and a decoder, to respectively model qϕ(zs|x),
qϕ(zc|x), and pθ(x|zc, zs) defined in Section 3. The structure
of each component as well as other implementation details are
described as follows.

Speaker encoder: The speaker encoder consists of one
fully-connected (FC) layer with 256 hidden units, whose out-
put is activated by ReLU [22] and fed into 4 down-sampling
convolutional blocks. Each down-sampling convolutional
block includes two 1D convolution (Conv) layers with 256
filters and ReLU activations, while the output of the second
Conv layer is down-sampled by a factor of 2 using aver-
age pooling along the time axis. A residual connection is
adopted in each convolutional block to connect the input and
the output. The kernel sizes of Conv layers in the 4 convo-
lutional blocks are 3, 3, 5 and 5, respectively. The output
of convolutional blocks is further aggregated through global
average-pooling and fed into a fully connected layer to get
the 128-dimensional mean and variance vector of the speaker
posterior.

Content encoder: The content encoder consists of two
1D Conv layers each with 256 hidden units and a kernel size
of 3. Dropout [23] with the drop rate of 0.2 is embedded
after each Conv layer. Two self-attention blocks [24] with

256 hidden units, 4 attention heads, and 1024 feed-forward
network hidden dimensions are further stacked. The output
of self-attention blocks is projected to the 128-dimensional
mean and the variance for each frame.

Decoder: The decoder takes in the concatenation of the
speaker representation and the content representation to re-
construct the acoustic feature. Conv layers and self-attention
blocks with the same configurations as those in the content
encoder are first adopted. An FC layer is then used to predict
the acoustic feature. We further apply a PostNet [25] module
which consists of 5 layers of 1D Conv with the kernel size of
5, to predict the residual of the acoustic feature. Dropout with
probability 0.2 is used to regularize the PostNet. Both acous-
tic features predicted before and after the PostNet are taken
out for the loss computation.

Loss function: While Eqn. (3) defines the theoretical
form of the learning objective, which consists the negative
log-likelihood of the conditional distribution of the acoustic
feature as the reconstruction loss. In practice, we adopt the
sum of the mean-squared error (MSE) loss and mean-absolute
error (MAE) as the reconstruction loss. Since the conditional
distribution defined by our reconstruction loss cannot be ex-
plicitly expressed, the βc and βs values are not normalized
[11] with respect to the standard form of VAE.

Training and inference: During training, the inputs to
the speaker encoder and content encoder are from the same
utterance, while the input to the speaker encoder is firstly seg-
mented and shuffled along the time axis before being fed into
the following network. This operation can help avoid the con-
tent information being leaked into the speaker representation.
The speaker latent and the content latent are sampled though
re-parameterization during training, while only the mean vec-
tor and mean sequence of the two latent are used during infer-
ence. For model optimization, we use Adam optimizer [26]
with β1 = 0.9 and β2 = 0.999 and ϵ = 10−7, the learning
rate is fixed at 1.25 × 10−4. The training batch size is set as
32. During inference, the speech from the target speaker is fed
into the speaker encoder to obtain the speaker representation,
which is combined with content extracted from the source
speech in the decoder to generated the converted speech.

Hyper-parameters tuning: The two most important
hyper-parameters for the proposed model are βc and βs,
which directly determines the disentanglement performance.
To be honest, the tuning of these two parameters relies largely
on trial and error, i.e., one can find the best setting through
grid search. But we do notice one simple trick that can help
find the good parameters faster. One can start with a rela-
tively large βc (e.g., 0.1, if the same loss function as ours is
used) and a small βs (e.g., 10−3), this can generally yield
the content and speaker disentanglement, but the generation
quality may not be that good since the large βc causes too
much information loss of the content. Then we can decrease
βc gradually to find the value that yields also good genera-
tion quality. At the same time, βs should first be decreased



proportionally with βc and then separately tuned.

5. EXPERIMENTS

5.1. Dataset

We combine two openly available corpora, which are VCTK
[27] and AISHELL-3 [28] together for training and evalua-
tion of the proposed model. VCTK contains 110 speakers’
English speech data while AISHELL-3 consists of speech ut-
tered by 218 native Mandarin speakers. 88 speakers’ data
from VCTK and 116 speakers’ data from AISHELL-3 are
combined as a bilingual training set. Another 20 speakers’
data from VCTK are evenly split for validation and testing,
while for AISHELL-3 15 and 16 other speakers’ data are used
so. Note that there are no common speakers among different
splits of the dataset. We down-sample all speech into 16kHz
and extract 80-dimensional logarithm Mel-Spectrograms with
200ms window length and 50ms window shift as the feature.

5.2. Evaluation on disentanglement

Following prior works [16, 18, 29], we conduct speaker ver-
ification (SV) on the learned content and speaker representa-
tions and report the equal error rate (EER) as a metric of the
disentanglement. Intuitively, a high EER produced by zc and
a low EER yielded by the zs can denote a good disentangle-
ment of content and speaker representations. To compute the
EER, we randomly select 4 utterances from each speaker in
the test set as the enrolled samples, which are used to compute
the speaker embedding (by averaging their zc’s or zc’s). The
remaining utterances of the speaker are used as the positive
trials while all other speakers’ utterances are negative trials.
Cosine similarity is computed as the score. The EERs are
evaluated separately for English and Mandarin test sets.

As discussed in Section 3.2, the weight parameters βc

and βs restrict the respective amounts of information con-
tained in zc and zs, and thus are very important for disen-
tanglement. We show EERs with respect to zc and zs for
both English (EN) and Mandarin (CN) test set in Table 1,
where βc varies among {10−3, 10−2} and βs is taken from
{10−5, 10−4, 10−3}.

We can first observe the effect of decreasing the absolute
values of both βc and βs by comparing the results yielded by
cases (βc, βs) = (10−2, 10−4) and (βs, βc) = (10−3, 10−5).
While the ratios between βc and βs for both cases are 100,
they produce quite different representations in terms of disen-
tanglement. As we can observe from results of English test
set, the EERs computed using zc and zs are 0.369 and 0.115
respectively for the former case, while those values become
0.198 and 0.069 for the latter case. While the former case
shows more desirable disentanglement, the second case yields
a zc with too much speaker information. This is because with
restrictions that are too loose on both zc and zs when set-
ting (βs, βc) = (10−3, 10−5), it cannot be ensured that the

information captured by zc and zs are complementary. Thus,
different from [18] which claims that a proper ratio βc

βs
can

induce the desired disentanglement, we argue that it is also
important to first set proper absolute values for βc and βs,
which restricts zc and zs to be more complementary.

Furthermore, setting proper relative values of βc and βs is
also important for disentanglement. As can be observed from
Table 1, increasing the value of βc causes significant increases
of EERs for both EN and CN content representations and all
βs values, denoting the reduction of the speaker information
captured by zc. On the other hand, the increase of βs puts
more penalization on the speaker representation and thus al-
lows more speaker information to leak into zc, which is indi-
cated by the overall declining trend of EERs for zc and the op-
posite trend for zs horizontally. Meanwhile, larger βc (10−2)
produces a stabler speaker-independent zc as the changes in
EERs caused by the increasing βs are limited.

Table 1. SV results on content and speaker representations
Rep. βs = 10−5 βs = 10−4 βs = 10−3

zc (EN) ↑ βc = 10−3 0.198 0.179 0.151
βc = 10−2 0.366 0.369 0.319

zc (CN) ↑ βc = 10−3 0.253 0.223 0.155
βc = 10−2 0.379 0.375 0.328

zs (EN) ↓ βc = 10−3 0.069 0.131 0.372
βc = 10−2 0.075 0.115 0.357

zs (CN) ↓ βc = 10−3 0.061 0.105 0.273
βc = 10−2 0.043 0.113 0.285

5.3. Evaluation on one-shot VC

We conduct subjective evaluations on both intra-lingual and
cross-lingual VC. We select 4 Mandarin speakers and 4 En-
glish speakers, both consisting of 2 male speakers and 2
female speakers. One utterance of each speaker is randomly
chosen as the source and also the reference speech. All
utterances are converted to all other speakers, thus in to-
tal we obtain 56 converted samples, while 24 of them are
intra-lingual (EN2EN and CN2CN) and 32 are cross-lingual
cases (EN2CN and CN2EN). Twelve subjects are asked to
score these converted samples based on their naturalness and
speaker similarity. 5-scale mean opinion score (MOS) is
applied for both speech naturalness and speaker similarity.

We adopt two competitive unsupervised one-shot VC
models AdIN-VC [9] and VQMIVC [8] as our baselines,
while Hifi-GAN [30] is used as the vocoder. We denote the
proposed model as β-VAEVC. We train the two baseline
models as well as the vocoder on the same acoustic features
and training set as ours. The copy-synthesized speech of the
source speech is included in the naturalness evaluation, while
those of randomly selected speech from the target speakers
are scored in the speaker similarity evaluation. Some samples
are available on https://beta-vaevc.github.io.

We first show the EERs obtained by content and speaker
representations of three compared models in Table 2. For β-



VAEVC the βc and βs are set as 3 × 10−3 and 10−7 respec-
tively. However, as shown in Table 2, this setting does not
yield the best disentanglement results in terms of EERs. As
zc of β-VAEVC seems to contain more speaker information
than two baselines. Though we can achieve more speaker-
independent zc for β-VAEVC via further increasing βc, we
find it can also decrease the generation quality. Thus, we
choose the parameter setting that works better on the valida-
tion set in terms of speech generation quality. The naturalness

Table 2. SV results of three compared models
Model zc (EN) ↑ zs (EN) ↓ zc (CN) ↑ zs (CN) ↓

AdIN-VC 0.373 0.065 0.371 0.074
VQMIVC 0.398 0.106 0.376 0.091
β-VAEVC 0.279 0.054 0.322 0.053

and similarity MOS results are shown in Table 3 and Table
4, respectively. We can observe that the proposed method
achieves overall both better naturalness and speaker similar-
ity than the two baselines. While AdIN-VC works compara-
bly well for English intra-lingual conversion, its performance
is much worse when it comes to Mandarin intra-lingual con-
version and two directions of cross-lingual conversion. While
VQMIVC archives overall good conversion naturalness, the
speaker similarity performance is not as satisfying as that for
speech naturalness, especially for cross-lingual cases.

Table 3. Speech naturalness MOS results (±95% CI)
Model EN2EN EN2CN CN2CN CN2EN Overall

Hifi-GAN 4.32±0.08 4.32±0.08 4.30±0.08 4.30±0.08 4.31±0.06

AdIN-VC 3.41±0.15 2.85±0.14 2.94±0.17 2.74±0.15 2.96±0.08
VQMIVC 3.56±0.15 3.15±0.12 3.27±0.13 3.18±0.14 3.27±0.07
β-VAEVC 3.71±0.14 3.53±0.13 3.71±0.14 3.35±0.15 3.56±0.07

Table 4. Speaker similarity MOS results (±95% CI)
Model EN2EN EN2CN CN2CN CN2EN Overall

Hifi-GAN 4.30±0.13 4.46±0.10 4.46±0.10 4.30±0.13 4.36±0.08

AdIN-VC 3.36±0.23 2.83±0.18 2.75±0.24 2.91±0.21 2.95±0.11
VQMIVC 3.04±0.25 2.60±0.19 3.26±0.22 2.55±0.20 2.82±0.11
β-VAEVC 3.54±0.19 3.00±0.16 3.32±0.24 3.31±0.18 3.27±0.10

In addition, we utilize the transcription error obtained by
open-source pre-trained ASR models [31] as indicators of the
conversion intelligibility. We conduct both intra-lingual and
cross-lingual VC on the whole test set, that is, all utterances
are converted to all the other speakers. There are in total
42,340 converted utterances for English intra-lingual VC,
77,920 for Mandarin intra-lingual VC, 67,744 for English-
to-Mandarin conversion and 48,700 for Mandarin-to-English
conversion. Pre-trained English and Mandarin ASR models
are used to transcribe the corresponding utterances, then the
word error rate (WER) and character error rate (CER) are
computed respectively for English and Mandarin. The recog-
nition results on re-synthesized utterances of all samples

in the test set by Hifi-GAN are also included as reference.
The results are shown in Table 5. The proposed model sur-
passes baseline models by large margins for two intra-lingual
VC cases and the Mandarin-to-English conversion case, and
shows comparable performance with other two methods for
the English-to-Mandarin conversion. Besides, we notice that
VQMIVC achieves better WER / CER than AdIN-VC for
cross-lingual conversion, while the latter model is better for
intra-lingual cases.

Though all compared models can realize cross-lingual
VC, we can see that there are gaps between the performance
of intra-lingual VC and cross-lingual VC for all metrics, as
shown in Table 3, 4 and 5. This is reasonable since the in-
puts to the content encoder and speaker encoder are from the
different domain for cross-lingual VC cases, which is not the
case during training. Besides, the difference in the recording
conditions of two corpora VCTK and AISHELL-3 can make
the train-inference mismatch issue even worse. We will tackle
this problem in our future work.

Table 5. Speech recognition error results
Model EN2EN EN2CN CN2CN CN2EN

Hifi-GAN 5.11% 2.70%

AdIN-VC 30.61% 45.88% 23.01% 51.31%
VQMIVC 35.09% 43.60% 33.37% 44.70%
β-VAEVC 23.41% 46.33% 10.58% 32.24%

6. CONCLUSION

We propose a method to disentangle speech into content and
speaker representations, which can be applied to the challeng-
ing task of one-shot cross-lingual VC. Our method is based on
a VAE with two encoders to extract speaker and content repre-
sentations respectively. With the speaker encoder compress-
ing the whole speech into a single vector and the content en-
coder extracting the frame-level representation out of speech,
the time-variant and time-invariant elements of speech can be
more easily separated into two representations. Furthermore,
inspired by β-VAE, we propose a learning objective that in-
corporates two weight parameters to restrict the amount of
information that can be captured by the two representations.
With proper weight parameters imposed, the disentanglement
can be ensured to be with respect to content and speaker in-
formation. We apply the proposed method to one-shot cross-
lingual VC, through which we show the effectiveness of the
proposed method in achieving content and speaker disentan-
glement.
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2018, Stockholmsmässan, Stockholm, Sweden, July 10-
15, 2018, Jennifer G. Dy and Andreas Krause, Eds.
2018, vol. 80 of Proceedings of Machine Learning Re-
search, pp. 5656–5665, PMLR.

[30] Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae, “Hifi-
gan: Generative adversarial networks for efficient and
high fidelity speech synthesis,” Advances in Neural
Information Processing Systems, vol. 33, pp. 17022–
17033, 2020.

[31] Oleksii Kuchaiev, Jason Li, Huyen Nguyen, Oleksii
Hrinchuk, Ryan Leary, Boris Ginsburg, Samuel Kriman,
Stanislav Beliaev, Vitaly Lavrukhin, Jack Cook, et al.,
“Nemo: a toolkit for building ai applications using neu-
ral modules,” arXiv preprint arXiv:1909.09577, 2019.


